152 research outputs found

    Complexity of Construction Mega Infrastructure Project

    Get PDF
    No Abstract Availabl

    SUMMARIZING SEARCH RESULTS WITH AUTOMATIC TABLES OF CONTENTS

    Get PDF

    A direct optimization method for low group delay FIR filter design

    Get PDF
    This paper studies the design of FIR filter with low group delay, where the desired phase response is not being approximated. It is formulated as a constrained optimization problem, which is then solved globally. Numerical experiments show that our design method can produce a filter with smaller group delay than that obtained by the existing convex optimization method used in conjunction with a minimum phase spectral factorization method under the same design criteria. Furthermore, our formulation offers us the flexibility for the trade-off between the group delay and the magnitude response directly. It also allows the feasibility of imposing constraints on the group delay

    Optimization in Industrial Systems

    Get PDF

    Multi-criterion two-sided matching of Public-Private Partnership infrastructure projects: Criteria and methods

    Get PDF
    Two kinds of evaluative criteria are associated with Public-Private Partnership (PPP) infrastructure projects, i.e., private evaluative criteria and public evaluative criteria. These evaluative criteria are inversely related, that is, the higher the public benefits; the lower the private surplus. To balance evaluative criteria in the Two-Sided Matching (TSM) decision, this paper develops a quantitative matching decision model to select an optimal matching scheme for PPP infrastructure projects based on the Hesitant Fuzzy Set (HFS) under unknown evaluative criterion weights. In the model, HFS is introduced to describe values of the evaluative criteria and multi-criterion information is fully considered given by groups. The optimal model is built and solved by maximizing the whole deviation of each criterion so that the evaluative criterion weights are determined objectively. Then, the match-degree of the two sides is calculated and a multi-objective optimization model is introduced to select an optimal matching scheme v ia a min-max approach. The results provide new insights and implications of the influence on evaluative criteria in the TSM decision

    Bidding Strategy to Support Decision-Making Based on Comprehensive Information in Construction Projects

    Get PDF
    © 2016 Ru Liang et al. This paper develops a unified method to support contractor for bidding selection in construction projects. A cross-functional contractor with 28 candidate units distributed in the three departments (construction units, design units, and suppliers) is used as an example. This problem is first formulated as a 0-1 quadratic programming problem through optimizing individual performance and collaborative performance of the candidate units based on individual information and collaborative information. Then, a multiobjective evolutionary algorithm is designed to solve this problem and a bidding selection problem for a major bridge project is used to demonstrate our proposed method. The results show that the decision-maker (DM) obtains a better contractor if he pays more attention to collaborative performance

    A Multi-turn Machine Reading Comprehension Framework with Rethink Mechanism for Emotion-Cause Pair Extraction

    Full text link
    Emotion-cause pair extraction (ECPE) is an emerging task in emotion cause analysis, which extracts potential emotion-cause pairs from an emotional document. Most recent studies use end-to-end methods to tackle the ECPE task. However, these methods either suffer from a label sparsity problem or fail to model complicated relations between emotions and causes. Furthermore, they all do not consider explicit semantic information of clauses. To this end, we transform the ECPE task into a document-level machine reading comprehension (MRC) task and propose a Multi-turn MRC framework with Rethink mechanism (MM-R). Our framework can model complicated relations between emotions and causes while avoiding generating the pairing matrix (the leading cause of the label sparsity problem). Besides, the multi-turn structure can fuse explicit semantic information flow between emotions and causes. Extensive experiments on the benchmark emotion cause corpus demonstrate the effectiveness of our proposed framework, which outperforms existing state-of-the-art methods.Comment: Accepted to COLING 202

    A Multiobjective Genetic Algorithm Based on a Discrete Selection Procedure

    Get PDF
    © 2015 Qiang Long et al. Multiobjective genetic algorithm (MOGA) is a direct search method for multiobjective optimization problems. It is based on the process of the genetic algorithm; the population-based property of the genetic algorithm is well applied in MOGAs. Comparing with the traditional multiobjective algorithm whose aim is to find a single Pareto solution, the MOGA intends to identify numbers of Pareto solutions. During the process of solving multiobjective optimization problems using genetic algorithm, one needs to consider the elitism and diversity of solutions. But, normally, there are some trade-offs between the elitism and diversity. For some multiobjective problems, elitism and diversity are conflicting with each other. Therefore, solutions obtained by applying MOGAs have to be balanced with respect to elitism and diversity. In this paper, we propose metrics to numerically measure the elitism and diversity of solutions, and the optimum order method is applied to identify these solutions with better elitism and diversity metrics. We test the proposed method by some well-known benchmarks and compare its numerical performance with other MOGAs; the result shows that the proposed method is efficient and robust

    A Binary differential search algorithm for the 0-1 multidimensional knapsack problem

    Get PDF
    The multidimensional knapsack problem (MKP) is known to be NP-hard in operations research and it has a wide range of applications in engineering and management. In this study, we propose a binary differential search method to solve 0-1 MKPs where the stochastic search is guided by a Brownian motion-like random walk. Our proposed method comprises two main operations: discrete solution generation and feasible solution production. Discrete solutions are generated by integrating Brownian motion-like random search with an integer-rounding operation. However, the rounded discrete variables may violate the constraints. Thus, a feasible solution production strategy is used to maintain the feasibility of the rounded discrete variables. To demonstrate the efficiency of our proposed algorithm, we solved various 0-1 MKPs using our proposed algorithm as well as some existing meta-heuristic methods. The numerical results obtained demonstrated that our algorithm performs better than existing meta-heuristic methods. Furthermore, our algorithm has the capacity to solve large-scale 0-1 MKPs

    Sparsity-enhanced optimization for ejector performance prediction

    Get PDF
    Within a model of the ejector performance prediction, the influence of ejector component efficiencies is critical in the prediction accuracy of the model. In this paper, a unified method is developed based on sparsity-enhanced optimization to determine correlation equations of ejector component efficiencies in order to improve the prediction accuracy of the ejector performance. An ensemble algorithm that combines simulated annealing and gradient descent algorithm is proposed to obtain its global solution for the proposed optimization problem. The ejector performance prediction of a 1-D model in the literature is used as an example to illustrate and validate the proposed method. Tests results reveal that the maximum and average absolute errors for the ejector performance prediction are reduced much more when compared with existing results under the same experimental condition. Furthermore, the results indicate that the ratio of geometric parameters to operating parameters is a key factor affecting the ejector performance
    • …
    corecore